
In Proceedings Ground System Architectures Workshop (GSAW 2003), March 4—6 2003, Manhattan Beach, CA USA.

An Extended Framework for the Validation and Verification
of Situation-Aware Middleware Architectures

SangEun Kim1, Peter In2, and Ramesh Bharadwaj 3

1 Dept. of Computer Science, Texas A&M University, College Station, TX 77840 USA, Tel: 1-979-845-5439, sangeunk@cs.tamu.edu
2 Dept. of Computer Science, Texas A&M University, College Station, TX 77840 USA, Tel: 1-979-458-1547, hohin@cs.tamu.edu
3 Center for High Assurance Computer Systems, Naval Research Laboratory, Washington DC, Tel: 1-202-767-7210, ramesh@itd.nrl.navy.mil

Abstract
Model checking is a technique that has been successfully
applied for the validation and verification of hardware
specifications and communication protocols. In mission-
critical systems of NASA and the DoD, various mobile
devices generate information dynamically, and their state
changes with time. Most often, a situation serves as a
trigger for a new situation. Therefore, it is necessary to
extend existing model checking methods and tools in order
to apply them for the validation and verification of
situation-aware, mission-critical applications such as DoD
command and control systems or the Navy’s Total Ship
Computing Environment. However, there are several
problems to be overcome before these techniques become
practical, such as overcoming the state explosion problem
and adapting the V&V systems and algorithms to this
application area.

In this paper, we propose a new technique, founded on
combining existing techniques in theorem proving and
model checking to extend the application area of existing
pure model checking methods. This paper also introduces
state space reduction methods based on abstraction that
ameliorate the state explosion problem. Future distributed
real-time and embedded system must necessarily be highly
adaptable, secure, and reliable. Existing system
development techniques therefore need to be extended so
that future systems have the capability to meet these new
system requirements.

1. Motivation

In mission-critical systems such as DoD Command and
Control Systems (DCCS) or the Navy’s future Total Ship
Computing Environment (TSCE), it is foreseen that tens of
thousands of dynamically configurable systems will
collaborate to create and process information in a secure
and adaptable manner. An emerging new technology that
could be used to design and build such applications is
known as Situation-Aware Middleware (SAM). This
dynamically configurable middleware will include
functionality to support information dissemination to users
in a dependable, yet transparent manner. The middleware
must provide an open, standards-compliant, ubiquitous
communication channel between situation-aware
applications and its architecture must be lightweight.
However, since future systems will operate in a dynamic
and situation changing environment, this increases the
difficulty of validation and verification of such
applications. In general, validation and verification (V&V)
of current day software systems is very difficult because the

number of reachable states of such systems is very large.
Therefore, when applied to these systems, conventional
tools fail to complete the verification task, and usually
terminate prematurely after consuming all available system
resources. Therefore, model checking has rarely been
applied for the analysis of software specifications even
though it has been successfully used for the validation and
verification of device drivers and communication protocols.
In the past, scalability was achieved by the use of efficient
representation techniques, such as Binary Decision
Diagrams (BDDs), that are a canonical representation for
boolean formulae [1], to symbolically represent the state
space of a system. However, this technique has limited
applicability for software specifications, which include
variables of richer data types than Boolean. For instance,
common data types include enumerations, and integer and
real types. In this paper, we propose an integrated
validation and verification system, which we call the
Extended Validation & Verification System (EVS), which
is designed to overcomes some of the difficulties in
applying model checking to situation-aware applications.
EVS is based on two major ideas: One idea is to combine
model checking with theorem proving methods to achieve
scalability and ease-of-use. Another is to automatically
apply property-driven abstraction methods in order to
derive a simpler specification that will be amenable to
automated analysis.

In the next section, we discuss details of the Situation
Aware Middleware architecture used to develop situation-
aware applications. In Section 3, we discuss EVS and its
application to situation-aware applications, followed by the
conclusion in Section 4.

2. Situation-Aware Middleware Architecture

The need for a conceptual architecture for Situation-Aware
Middleware based on Reconfigurable Context-Sensitive
Middleware (RCSM) is proposed in [2]. Ubiquitous
applications need to be aware of several contexts in order to
be able to adaptively communicate with each other across
different network environments, such as mobile ad-hoc
networks, the Internet, or even mobile phone networks.
However, existing context-aware techniques often become
inadequate in these applications where combinations of
multiple contexts and users’ actions need to be analyzed
over a period of time. Situation-awareness in application
software is considered a desirable feature in order to
overcome this limitation. In addition to being context-
sensitive, situation-aware applications can respond to both

green
Text Box
NRL Release Number 03-1221.1-0601

In Proceedings Ground System Architectures Workshop (GSAW 2003), March 4—6 2003, Manhattan Beach, CA USA.

 2

current and historical relationships between specific
contexts and device-actions.

Figure 1 shows how all of RCSM’s components are
layered inside a device. The Object Request Broker of
RCSM (R-ORB) assumes the availability of reliable
transport protocols; one R-ORB per device usually suffices.

Figure 1. Situation-Aware Middleware Architecture

The number of ADCs (Adaptive Object Containers)

depends on the number of context-sensitive objects in the
device. ADCs periodically collect the necessary “raw
context data” through the R-ORB, which in turn collects
data from sensors and the operating system. Initially, each
ADC registers with the R-ORB to express its needs for
contexts and publishes the corresponding context-sensitive
interface. RCSM is called re-configurable because it allows
addition or deletion of individual ADCs during runtime (to
manage new or existing context-sensitive application
objects) without affecting other runtime operations inside
RCSM. An example of a SmartClassroom is presented in
[3].

3. Validation and Verification Framework

In Section 2, the situation-aware middleware architecture,
which will be the basis for validation and verification, was
introduced. In this section, we describe the architecture of
the EVS, and the aspects of the EVS related to the proposed
target middleware model with respect to the aspects of
situation-awareness, real-time, and security.

During model checking, the state spaces of software
systems are extremely large. Therefore, in current
computing environments, applying model checking to such
systems is often infeasible. Traditionally, there have been
two main approaches to solve this problem, one using
abstraction techniques and the other using partial order

reduction methods. The idea of applying abstraction was
first introduced by Clarke et al [4]. In this paper, the
authors demonstrate how abstract finite state machines may
be extracted directly from finite state programs, using a
method similar to those used in abstract interpretation. The
partial order reduction method consists of constructing a
reduced state graph. The full state graph, which may be too
big to fit in memory, need never be constructed [5]. This
method is a good fit for asynchronous system verification.

The system EVS has two main capabilities, one to
support abstraction mechanisms to reduce the state space
and the other is to combine theorem proving and model
checking. As shown in Figure 2, EVS consists of the
following three sub-components:

3.1 Abstraction Mechanisms Generating Component:
The inputs to this component include specifications of all
the situations, in a formal notation called the situation-
aware contract specification language, SA-CSL [6].
Conventional model checking and theorem proving tools
are mainly used to specify and check safety properties.
Therefore, in order to check that situation-awareness, real-
time, and security Quality of Service (QoS) requirements
are met by the middleware specified in SA-CSL, there is a
need to extend their capabilities. Our proposed extensions
can reduce redundant, unnecessary constraints related to
situation-awareness, and real-time and security constraints.

In Proceedings Ground System Architectures Workshop (GSAW 2003), March 4—6 2003, Manhattan Beach, CA USA.

 3

These abstraction mechanisms make the system EVS
(discussed in the sequel) to be more effective and efficient.

3.2 Extended Validation and Verification System:
The two major problems addressed by the system EVS are
the state explosion problem during model checking and the
need for user ingenuity and guidance in the case of theorem
proving. A two-pronged approach is being used to tackle
these issues: (1) Use of the invariant checker Salsa which
uses a combination of theorem proving and model checking
techniques to provide scalability and ease-of-use. (2)
Automatic property-driven abstraction methods to
transform a specification expressed in SA-CSL into a
simpler specification that is amenable to automated
analysis. Additionally, a compliance checker (CC) proves
compliance of the specified situation-aware middleware
and the real-time constraints, the security policies, and QoS
requirements expected of the middleware. By ensuring that
these properties are satisfied and that the middleware
behaves as specified, we address the issue of integrity of
the generated middleware. Generally, this approach of
validation and verification requires formal definitions using
a Kripke structure to model the situation-aware application.
Let AP be a set of atomic propositions. A Kripke structure
over AP is a four tuple K = {AP, S, A, L} where AP is a set
of atomic propositions that hold in a specific system state, S
is a finite set of situations, A (SSA ×⊆) is a finite set of

actions and L (APS 2→) is a labeling function that labels
each situation with the set of atomic propositions that hold
for that situation.

3.3 Translator for the Extended Validation and

Verification System (TEVS):
The Translator for the Extended Validation and Verification
System (TEVS) is an interface between the Abstraction
Mechanism and EVS. We plan to develop the system EVS
and its components by reusing existing components and
tools. Therefore, the translator will serve as the “glue”
code that will serve as the interface to this diversity of
systems and notations.

4. Conclusion

In this paper, we describe the architecture and design of an
extended V&V system for situation-aware middleware
architectures for mission-critical applications. The benefits
of using our framework are: (1) Ease of development of
situation-awareness applications and (2) Ability to validate
and verify them by the use of efficient techniques to deal
with the state space explosion problem by the use of a
combination of abstraction methods and invariant checking.

ACKNOWLEDGEMENTS
We would like to thank Dr. Stephen Yau, of Arizona State
University, for the helpful discussions on this topic.

References
[1] Ramesh Bharadwaj and Connie Heitmeyer, “Model
Checking Complete Requirements Specifications Using
Abstraction,” Automated Software Engineering, Volume 6,
pp. 37--68, 1999.
[2] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta,
"Reconfigurable Context-Sensitive Middleware for
Pervasive Computing," IEEE Pervasive Computing, 1(3),
July-September 2002, pp. 33-40.
[3] R. Bharadwaj and S. Sims, “Salsa: Combining
Constraint Solvers with BDDs for Automatic Invariant
Checking”, Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 00), March
2000, Germany.
[4] E. M. Clarke et al., “Model Checking and Abstraction,”
ACM Transactions on Programming Languages and
Systems, pp. 1512-1542, 16(5), September 1994.
[5] D. Peled, “Combining partial order reductions with on-
the-fly model-checking,” Proceedings of the 1994
Workshop on Computer-Aided Verification, LNCS 818,
pp. 377--390, Springer, 1994.
[6] S. S. Yau, Y. Wang, D. Huang, and H. In, “A
Middleware Situation-Aware Contact Specification
Language for Ubiquitous Computing,” submitted to
FTDCS2003.

